Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution

Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution

  • 1.

    Hamidpour, R., Hamidpour, S., Hamidpour, M. & Shahlari, M. Camphor (Cinnamomum camphora), a conventional treatment with the historical past of treating a number of ailments. Int. J. Case Rep. Imag. 4, 86–89 (2013).

    Article 

    Google Scholar 

  • 2.

    Christenhusz, M. J. M. & Byng, J. W. The variety of recognized vegetation species on the planet and its annual enhance. Phytotaxa 261, 201–217 (2016).

    Article 

    Google Scholar 

  • 3.

    Palmer, J. D., Soltis, D. E. & Chase, M. W. The plant tree of life: an summary and a few factors of view. Am. J. Bot. 91, 1437–1445 (2004).

    Article 
    PubMed 

    Google Scholar 

  • 4.

    Moore, M. J., Bell, C. D., Soltis, P. S. & Soltis, D. E. Utilizing plastid genome-scale information to resolve enigmatic relationships amongst basal angiosperms. Proc. Natl Acad. Sci. USA 104, 19363–19368 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 5.

    Endress, P. Ok. & Doyle, J. A. Reconstructing the ancestral angiosperm flower and its preliminary specializations. Am. J. Bot. 96, 22–66 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 6.

    Qiu, Y.-L. et al. Angiosperm phylogeny inferred from sequences of 4 mitochondrial genes. J. Syst. Evol. 48, 391–425 (2010).

    Article 

    Google Scholar 

  • 7.

    Zhang, N., Zeng, L. P., Shan, H. Y. & Ma, H. Extremely conserved low-copy nuclear genes as efficient markers for phylogenetic analyses in angiosperms. New Phytol. 195, 923–937 (2012).

    Article 
    CAS 

    Google Scholar 

  • 8.

    Zeng, L. et al. Decision of deep angiosperm phylogeny utilizing conserved nuclear genes and estimates of early divergence occasions. Nat. Commun. 5, 4956 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Byng, J. W. et al. An replace of the Angiosperm Phylogeny Group classification for the orders and households of flowering vegetation: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).

    Article 

    Google Scholar 

  • 10.

    Cui, L. et al. Widespread genome duplications all through the historical past of flowering vegetation. Genome Res. 16, 738–749 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Liu, Y. C., Lu, F. Y. & Ou, C. H. Bushes of Taiwan. Monograph. Pub. 7, 105–131 (1988).

    Google Scholar 

  • 12.

    Fujita, Y. Classification and phylogeny of the genus Cinnamomum seen from the constituents of important oils. Bot. Magazine. Tokyo 80, 261–271 (1967).

    Article 

    Google Scholar 

  • 13.

    Chang, T. T. & Chou, W. N. Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycol. Res. 99, 756–758 (1995).

    Article 

    Google Scholar 

  • 14.

    Wu, S. H., Ryvarden, L. & Chang, T. T. Antrodia camphorata (“niu-chang-chih”), new mixture of a medicinal fungus in Taiwan. Bot. Bull. Acad. Sinica 38, 273–275 (1997).

    Google Scholar 

  • 15.

    Hseu, Y. C., Chen, S. C., Yech, Y. J., Wang, L. & Yang, H. L. Antioxidant exercise of Antrodia camphorata on free radical-induced endothelial cell injury. J. Ethnopharmacol. 118, 237–245 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 16.

    Liao, P. C. et al. Historic spatial vary enlargement and a really current bottleneck of Cinnamomum kanehirae Hay. (Lauraceae) in Taiwan inferred from nuclear genes. BMC Evol. Biol. 10, 124 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Zerbe, P. & Bohlmann, J. Plant diterpene synthases: exploring modularity and metabolic range for bioengineering. Tendencies Biotechnol. 33, 419–428 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database administration instrument for second-generation genome tasks. BMC Bioinformatics 12, 491 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Huerta-Cepas, J. et al. Quick genome-wide practical annotation by orthology task by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome meeting and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Google Scholar 

  • 21.

    Emms, D. M. & Kelly, S. OrthoFinder: fixing basic biases in entire genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Azuma, J.-I. & Tetsuo, Ok. Lignin–carbohydrate complexes from numerous sources. Strategies Enzymol. 161, 12–18 (1988).

    Article 
    CAS 

    Google Scholar 

  • 23.

    Li, H. & Durbin, R. Inference of human inhabitants historical past from particular person whole-genome sequences. Nature 475, 493–496 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Sibuet, J.-C. & Hsu, S.-Ok. How was Taiwan created? Tectonophysics 379, 159–181 (2004).

    Article 

    Google Scholar 

  • 25.

    Dong, P. F. et al. 3D chromatin structure of enormous plant genomes decided by native A/B compartments. Mol. Plant 10, 1497–1509 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Watson, J. M. & Riha, Ok. Comparative biology of telomeres: the place vegetation stand. FEBS Lett. 584, 3752–3759 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Stamatakis, A. RAxML-VI-HPC: most likelihood-based phylogenetic analyses with 1000’s of taxa and blended fashions. Bioinformatics 22, 2688–2690 (2006).

    Article 
    CAS 

    Google Scholar 

  • 28.

    Mirarab, S. & Warnow, T. ASTRAL-II: coalescent-based species tree estimation with many lots of of taxa and 1000’s of genes. Bioinformatics 31, i44–i52 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Matasci, N. et al. Knowledge entry for the 1,000 Vegetation (1KP) challenge. Gigascience 3, 17 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Yang, Z. PAML 4: phylogenetic evaluation by most probability. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article 
    CAS 

    Google Scholar 

  • 31.

    Massoni, J., Couvreur, T. L. & Sauquet, H. 5 main shifts of diversification by the lengthy evolutionary historical past of Magnoliidae (angiosperms). BMC Evol. Biol. 15, 49 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl Acad. Sci. USA 115, E2274–E2283 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Zhong, B. J. & Betancur-R, R. Expanded taxonomic sampling coupled with gene family tree interrogation offers unambiguous decision for the evolutionary root of angiosperms. Genome Biol. Evol. 9, 3154–3161 (2017).

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 34.

    Lang, T. G. et al. Protein area evaluation of genomic sequence information reveals regulation of LRR associated domains in plant transpiration in Ficus. PLoS ONE 9, e108719 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Jourda, C. et al. Growth of banana (Musa acuminata) gene households concerned in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications. New Phytol. 202, 986–1000 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Gu, C. et al. A number of regulatory roles of AP2/ERF transcription consider angiosperm. Bot. Stud. 58, 6 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Seyfferth, C. et al. Ethylene-related gene expression networks in wooden formation. Entrance. Plant Sci. 9, 272 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Chen, T. et al. Expression of an alfalfa (Medicago sativa L.) ethylene response issue gene MsERF8 in tobacco vegetation enhances resistance to salinity. Mol. Biol. Rep. 39, 6067–6075 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Wu, L., Zhang, Z., Zhang, H., Wang, X. C. & Huang, R. Transcriptional modulation of ethylene response issue protein JERF3 within the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol. 148, 1953–1963 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Dodds, P. N. et al. Direct protein interplay underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc. Natl Acad. Sci. USA 103, 8888–8893 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Chen, F., Tholl, D., Bohlmann, J. & Pichersky, E. The household of terpene synthases in vegetation: a mid-size household of genes for specialised metabolism that’s extremely diversified all through the dominion. Plant J. 66, 212–229 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Martin, D. M., Faldt, J. & Bohlmann, J. Purposeful characterization of 9 Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol. 135, 1908–1927 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Cheng, S. S. et al. Chemical polymorphism and composition of leaf important oils of Cinnamomum kanehirae utilizing fuel chromatography/mass spectrometry, cluster evaluation, and principal element evaluation. J. Wooden Chem. Technol. 35, 207–219 (2015).

    Article 
    CAS 

    Google Scholar 

  • 44.

    Peripolli, E. et al. Runs of homozygosity: present data and functions in livestock. Anim. Genet. 48, 255–271 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Soltis, D. E. & Soltis, P. S. Isozyme proof for historical polyploidy in primitive angiosperms. Syst. Bot. 15, 328–337 (1990).

    Article 

    Google Scholar 

  • 46.

    Jiao, Y. et al. A genome triplication related to early diversification of the core eudicots. Genome Biol. 13, R3 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Chanderbali, A. S., Berger, B. A., Howarth, D. G., Soltis, D. E. & Soltis, P. S. Evolution of floral range: genomics, genes and gamma. Phil. Trans. R. Soc. 372, 20150509 (2017).

    Article 

    Google Scholar 

  • 48.

    Geethangili, M. & Tzeng, Y. M. Evaluation of pharmacological results of Antrodia camphorata and its bioactive compounds. Evid. Primarily based Complement. Alternat. Med. 2011, 1–17 (2011).

    Article 

    Google Scholar 

  • 49.

    Lu, M. Y. J. et al. Genomic and transcriptomic analyses of the medicinal fungus Antrodia cinnamomea for its metabolite biosynthesis and sexual improvement. Proc. Natl Acad. Sci. USA 111, E4743–E4752 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Loehlin, D. W. & Carroll, S. B. Expression of tandem gene duplicates is usually better than twofold. Proc. Natl Acad. Sci. USA 113, 5988–5992 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Sandbrink, J. M., Vellekoop, P., Vanham, R. & Vanbrederode, J. A way for evolutionary research on RFLP of chloroplast DNA, relevant to a spread of plant-species. Biochem. Syst. Ecol. 17, 45–49 (1989).

    Article 
    CAS 

    Google Scholar 

  • 52.

    Doyle, J. J. & Doyle, J. L. A speedy DNA isolation process for small portions of recent leaf tissue. Phytochem. Bull. 19, 11–15 (1987).

    Google Scholar 

  • 53.

    Kolosova, N., Gorenstein, N., Kish, C. M. & Dudareva, N. Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting vegetation. Plant Cell 13, 2333–2347 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Suen, D. F. et al. Project of DNA markers to Nicotiana sylvestris chromosomes utilizing monosomic alien addition strains. Theor. Appl. Genet. 94, 331–337 (1997).

    Article 
    CAS 

    Google Scholar 

  • 55.

    Dolezel, J., Greilhuber, J. & Suda, J. Estimation of nuclear DNA content material in vegetation utilizing circulation cytometry. Nat. Protoc. 2, 2233–2244 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Vurture, G. W. et al. GenomeScope: quick reference-free genome profiling from quick reads. Bioinformatics 33, 2202–2204 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Chin, C. S. et al. Phased diploid genome meeting with single-molecule real-time sequencing. Nat. Strategies 13, 1050–1054 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Chin, C. S. et al. Nonhybrid, completed microbial genome assemblies from long-read SMRT sequencing information. Nat. Strategies 10, 563–569 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Walker, B. J. et al. Pilon: an built-in instrument for complete microbial variant detection and genome meeting enchancment. PLoS ONE 9, e112963 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Putnam, N. H. et al. Chromosome-scale shotgun meeting utilizing an in vitro methodology for long-range linkage. Genome Res. 26, 342–350 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Benson, G. Tandem repeats finder: a program to research DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Dobin, A., Davis, C. & Schlesinger, F. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq utilizing the Trinity platform for reference technology and evaluation. Nat. Protoc. 8, 1494–1512 (2013).

    Article 
    CAS 

    Google Scholar 

  • 64.

    Pertea, M. et al. StringTie allows improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Music, L., Sabunciyan, S. & Florea, L. CLASS2: correct and environment friendly splice variant annotation from RNA-seq reads. Nucleic Acids Res. 44, e98 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Wu, T. D. & Watanabe, C. Ok. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).

    Article 
    CAS 

    Google Scholar 

  • 67.

    Venturini, L., Caim, S., Kaithakottil, G. G., Mapleson, D. L. & Swarbreck, D. Leveraging a number of transcriptome meeting strategies for improved gene construction annotation. Gigascience 7, giy093 (2018).

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 68.

    Stanke, M., Tzvetkova, A. & Morgenstern, B. AUGUSTUS at EGASP: utilizing EST, protein and genomic alignments for improved gene prediction within the human genome. Genome Biol. 7, S11 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Korf, I. Gene discovering in novel genomes. BMC Bioinformatics 5, 59 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Hoff, Ok. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKER1: unsupervised RNA-seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32, 767–769 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Conesa, A. et al. Blast2GO: a common instrument for annotation, visualization and evaluation in practical genomics analysis. Bioinformatics 21, 3674–3676 (2005).

    Article 
    CAS 

    Google Scholar 

  • 72.

    Wu, C. C., Ho, C. Ok. & Chang, S. H. The whole chloroplast genome of Cinnamomum kanehirae Hayata (Lauraceae). Mitochondrial DNA A DNA Mapp. Seq. Anal. 27, 2681–2682 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 73.

    Smith, D. R., Crosby, Ok. & Lee, R. W. Correlation between nuclear plastid DNA abundance and plastid quantity helps the restricted switch window speculation. Genome Biol. Evol. 3, 365–371 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Li, H. & Durbin, R. Quick and correct quick learn alignment with Burrows–Wheeler rework. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Danecek, P. et al. The variant name format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Buschiazzo, E., Ritland, C., Bohlmann, J. & Ritland, Ok. Sluggish however not low: genomic comparisons reveal slower evolutionary charge and better dN/dS in conifers in comparison with angiosperms. BMC Evol. Biol. 12, 8 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Cao, Y. N. et al. Inferring spatial patterns and drivers of inhabitants divergence of Neolitsea sericea (Lauraceae), based mostly on molecular phylogeography and panorama genomics. Mol. Phylogenet. Evol. 126, 162–172 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 79.

    Smit, A. & Hubley, R. RepeatModeler Open-1.0 (Institute for Techniques Biology, 2015).

  • 80.

    Smit, A., Hubley, R. & Inexperienced, P. RepeatMasker Open-4.0 (Institute for Techniques Biology, 2015).

  • 81.

    Abrusan, G., Grundmann, N., DeMester, L. & Makalowski, W. TEclass—a instrument for automated classification of unknown eukaryotic transposable components. Bioinformatics 25, 1329–1330 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Guan, R. et al. Draft genome of the residing fossil Ginkgo biloba. Gigascience 5, 49 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Katoh, Ok. & Standley, D. M. MAFFT a number of sequence alignment software program model 7: enhancements in efficiency and value. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Value, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—roughly maximum-likelihood timber for big alignments. PLoS ONE 5, e9490 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Paradis, E., Claude, J. & Strimmer, Ok. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article 
    CAS 

    Google Scholar 

  • 86.

    Sundell, D. et al. The plant genome integrative explorer useful resource: PlantGenIE.org. New Phytol. 208, 1149–1156 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 87.

    Sneddon, T. P., Li, P. & Edmunds, S. C. GigaDB: asserting the GigaScience database. Gigascience 1, 11 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 88.

    Bolser, D., Staines, D. M., Pritchard, E. & Kersey, P. in Plant Bioinformatics: Strategies and Protocols (ed. Edwards, D.) 115–140 (Springer, New York, 2016).

  • 89.

    De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational instrument for the examine of gene household evolution. Bioinformatics 22, 1269–1271 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 90.

    Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a useful resource for timelines, timetrees, and divergence occasions. Mol. Biol. Evol. 34, 1812–1819 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 91.

    Pryer, Ok. M. et al. Horsetails and ferns are a monophyletic group and the closest residing kin to seed vegetation. Nature 409, 618–622 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 92.

    Lyons, E. et al. Discovering and evaluating syntenic areas amongst Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with Rosids. Plant Physiol. 148, 1772–1781 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 93.

    Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a instrument for mining segmental genome duplications and synteny. Bioinformatics 20, 3643–3646 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 94.

    Wright, E. S. Utilizing DECIPHER v2.Zero to research huge organic sequence information in R. R J. 8, 352–359 (2016).

    Article 

    Google Scholar 

  • 95.

    Quinlan, A. R. & Corridor, I. M. Bedtools: a versatile suite of utilities for evaluating genomic options. Bioinformatics 26, 841–842 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 96.

    Ming, R. et al. The pineapple genome and the evolution of CAM photosynthesis. Nat. Genet. 47, 1435–1442 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 97.

    Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene household within the Cassava genome. BMC Genomics 16, 360 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 98.

    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 99.

    Finn, R. D. et al. InterPro in 2017—past protein household and area annotations. Nucleic Acids Res. 45, D190–D199 (2017).

    Article 
    CAS 

    Google Scholar 

  • 100.

    He, Z. et al. Evolviewv2: a web-based visualization and administration instrument for personalized and annotated phylogenetic timber. Nucleic Acids Res. 44, W236–W241 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 101.

    Aubourg, S., Lecharny, A. & Bohlmann, J. Genomic evaluation of the terpenoid synthase (AtTPS) gene household of Arabidopsis thaliana. Mol. Genet. Genomics 267, 730–745 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 102.

    Irmisch, S., Jiang, Y. F., Chen, F., Gershenzon, J. & Kollner, T. G. Terpene synthases and their contribution to herbivore-induced unstable emission in western balsam poplar (Populus trichocarpa). BMC Plant Biol. 14, 270 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 103.

    Martin, D. M. et al. Purposeful annotation, genome group and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene household based mostly on genome meeting, FLcDNA cloning, and enzyme assays. BMC Plant Biol. 10, 226 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 104.

    Wheeler, T. J. & Eddy, S. R. nhmmer: DNA homology search with profile HMMs. Bioinformatics 29, 2487–2489 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 105.

    Kumar, S., Stecher, G. & Tamura, Ok. MEGA7: molecular evolutionary genetics evaluation model 7.Zero for greater datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    Article 
    CAS 

    Google Scholar 

  • Author: admin

    Leave a Reply

    Your email address will not be published. Required fields are marked *